Total edge irregularity strength of the disjoint union of sun graphs

Muhammad Kamran Siddiqui, A Ahmad, M F Nadeem, Y Bashir


An edge irregular total $k$-labeling $\varphi: V\cup E \to \{ 1,2, \dots, k \}$ of a~graph $G=(V,E)$ is a~labeling of vertices and edges of $G$ in such a~way that for any different edges $uv$ and $u'v'$ their weights $\varphi(u)+ \varphi(uv) + \varphi(v)$ and $\varphi(u')+ \varphi(u'v') + \varphi(v')$ are distinct. The total edge irregularity strength, $tes(G)$, is defined as the minimum $k$ for which $G$ has an~edge irregular total $k$-labeling. In this paper, we consider the total edge irregularity strength of the disjoint union of $\emph{p}$ isomorphic sun graphs, $tes(\emph{p}M_{n})$, disjoint union of $\emph{p}$ consecutive non-isomorphic sun graphs, $tes(\bigcup_{j=1}^{\emph{p}}M_{n_{j}})$.

Full Text:



bibitem{Ahmad-6-09} A. Ahmad and M. Bav{c}a, Edge irregular total labeling of certain family of graphs, {it AKCE J. Graphs. Combin.} {bf 6}, No. 1 (2009), 21--29.

bibitem{Ahmad-2011} A. Ahmad , M. Bav{c}a and M. Numan , On irregularity strength of disjoint union of friendship graphs, {it Electronic J. of graph theory and applications,} in press.

bibitem{Ahmad-two-paths} A. Ahmad and M. Bav{c}a, Total edge irregularity strength of a~categorical product of two paths, {it Ars Combin.}, in press.

bibitem{Baca-307-07} M. Bav{c}a, S. Jendrov{l}, M. Miller and J. Ryan, On irregular total labellings, textit{Discrete Math.} textbf{307} (2007), 1378--1388.

bibitem{Bohman-45-04} T. Bohman and D. Kravitz, On the irregularity strength of trees, textit{J. Graph Theory} textbf{45} (2004), 241--254.

bibitem{Brandt-57-08} S. Brandt, J. Miv{s}kuf and D. Rautenbach, On a~conjecture about edge irregular total labellings, {it J. Graph Theory} textbf{57} (2008), 333--343.

bibitem{Chartrand-64-88} G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, textit{Congr. Numer.} textbf{64} (1988), 187--192.

bibitem{Frieze-02} A. Frieze, R.J. Gould, M. Karonski and F. Pfender, On graph irregularity strength, {it J. Graph Theory} {bf 41} (2002),


bibitem{Imrich-Klavzar-200} W. Imrich and S. Klavv{z}ar, {it Product Graphs: Structure and recognition}, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley and Sons, New York, (2000).

bibitem{Ivanco-26-06} J. Ivanv{c}o and S. Jendrov{l}, Total edge irregularity strength of trees, {it Discussiones Math. Graph Theory} {bf 26} (2006), 449--456.

bibitem{Jendrol-96} S. Jendrov{l}, M. Tk'{a}v{c} and Z. Tuza, The irregularity strength and cost of the union of cliques, {it Discrete Math.} {bf 150} (1996), 179--186.

bibitem{Jendrol-28-07} S. Jendrov{l}, J. Miv{s}kuf and R. Sot'{a}k, Total edge irregularity strength of complete and complete bipartite graphs, {it Electron. Notes Discrete Math.} {bf 28} (2007), 281--285.

bibitem{Jendrol-310-10} S. Jendrov{l}, J. Miv{s}kuf and R. Sot'{a}k, Total edge irregularity strength of complete graphs and complete bipartite graphs, {it Discrete Math.} {bf 310} (2010), 400--407.

bibitem{Karonski-91-04} M. Karo'{n}ski, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory B 91 (2004), 151--157.

bibitem{Miskuf-36-07} J. Miv{s}kuf and S. Jendrov{l}, On total edge irregularity strength of the grids, {it Tatra Mt. Math. Publ.} {bf 36} (2007), 147--151.

bibitem{Nierhoff-13-00} T. Nierhoff, A tight bound on the irregularity strength of graphs, textit{SIAM J. Discrete Math.} textbf{13} (2000), 313--323.

bibitem{nurdin-65-08} Nurdin, A.N.M. Salman and E.T. Baskoro, The total edge-irregular strengths of the corona product of paths with some graphs, {it J. Combin. Math. Combin. Comput.} {bf 65} (2008), 163--175.


  • There are currently no refbacks.

Web Counters

IJMSC has been indexed in several world class data bases like Google Scholar, DRJI (Directory of Research Journals Indexing) ,Cite Factor, Research Bible.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.