Characterization of complementary connected domination number of a graph

G. Mahadevan
Department of Mathematics,
Gandhigram Rural Institute-Deemed University,
Gandhigram-624302, INDIA.
E-Mail: gmaha2003@yahoo.co.in.

A. Selvam Avadayappan
Department of Mathematics, V.H.N.S.N.College,
Virudhunagar, INDIA.
E-Mail: selvam_avadayappan@yahoo.co.in.

A.Mydeenbibi
Research Scholar, Mother Teresa Women’s University,
Kodaikanal, INDIA.
E-Mail: amydeen2006@yahoo.co.in.

Abstract
A set $S \subseteq V$ is a complementary connected dominating set if S is a dominating set of G and the induced subgraph $G - S$ is connected. The complementary connected domination number $\gamma_{cc}(G)$ is the minimum cardinality taken over all complementary connected dominating sets in G. The chromatic number is the minimum number of colours required to colour all the vertices such that adjacent vertices do not receive the same colour and is denoted by χ. In this paper we characterize all cubic graphs on 8, 10, 12 vertices for which $\gamma_{cc} = \chi = 3$.

Keywords: Complementary connected domination number, Chromatic number.

AMS Subject Classification (2010): 05C.

1 Introduction

Let $G = (V, E)$ be a simple undirected graph. The degree of any vertex u in G is the number of edges incident with u and is denoted by $d(u)$. The minimum and maximum degree of a vertex is denoted by $\delta(G)$ and $\Delta(G)$ respectively. P_n denotes the path on n vertices. The vertex connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph. A colouring of a graph is an assignment of colours to its vertices so that no two adjacent vertices have the same colour. An n-colouring of a graph G uses n colours. The chromatic number χ is defined to be the minimum n for which G has an n-colouring. If $\chi(G) = k$ but $\chi(H) < k$ for every proper subgraph H of G, then G is k-critical. A subset S of V is called a dominating set in G if every vertex in $V - S$ is adjacent to at least one vertex in S. The minimum cardinality taken over all dominating sets in G is called the domination number of G and is denoted by γ.

A Set $S \subseteq V$ is a complementary connected dominating set if S is a dominating set of G and the induced subgraph $G - S$ is connected. The complementary connected domination number $\gamma_{cc}(G)$ is the minimum cardinality taken over all complementary connected dominating sets in G. The chromatic number is the minimum number of colours required to colour all the vertices such that adjacent vertices do not receive the same colour and is denoted by χ.

In [16], Volkman studied graphs for which $\gamma = \beta_1$. He also investigated graphs for which $\gamma = \omega_0$ [15]. In [12] J. Paulraj Joseph and S. Arumugam investigated graphs for which $\gamma = \gamma$. In [13],
J. Paulraj Joseph analyzed graphs for which the chromatic numbers are equal to domination parameters. In [5], G. Mahadevan A. Selvam Avadyappan and A. Mydeen bibi characterized all cubic graphs on 8, 10, 12 vertices for which $\gamma_c = \chi = 3$. In [6, 7], G. Mahadevan and J. Paulraj Joseph characterized all cubic graphs on 8, 10, 12 vertices for which $\gamma = \chi = 3$. In this paper we characterize all cubic graphs on 8, 10, 12 vertices for which $\gamma_c = \chi = 3$.

Theorem 1.1. [10] For any graph G, $\gamma_c(G) \leq n - \delta$

Theorem 1.2. [10] For any graph G, $\gamma_c(G) = n - 1$ if and only if G is a star. If G is not a star, then $\gamma_c(G) \leq n - 2$, $(n \geq 3)$

Theorem 1.3. [1] For any graph G, $\chi(G) \leq \Delta(G) + 1$

Theorem 1.4. [2] If G is a graph of order p with maximum degree Δ, then $\gamma \geq \lceil p / (\Delta + 1) \rceil$

Let $G = (V, E)$ be a connected cubic graph of order p with $\gamma_c = \chi$. By Theorem 1.3, $\chi \leq 3$. Clearly, $\chi \neq 1$. We consider cubic graphs for which $\gamma_c = \chi = 3$. By Theorem 1.4, $\gamma_c \geq \lceil p / 4 \rceil$. Since $\gamma_c = 3$, $6 < p \leq 15$ and $p \neq 4$. Since G is cubic we have p is even and hence the possible values of p are 8, 10 and 12.

2 Cubic graphs of order 8

Theorem 2.1. Let G be a connected cubic graph on 8 vertices. Then $\gamma_c = \chi = 3$ if and only if G is isomorphic to any one of the graphs given in Figure 2.1.

![Figure 2.1](image-url)

Proof. Let $S = \{u, v, w\}$ be a minimum complementary connected dominating set of G and $V-S = \{x_1, x_2, x_3, x_4, x_5\}$. Clearly $\left< S \right> \neq K_5$. Hence we consider the following three cases.

Case 1. $\left< S \right> = K_3$.

Without loss of generality, let u be adjacent to x_1, x_2 and x_3. Then v is adjacent to at least one of the vertices of $N(u) = \{x_1, x_2, x_3\}$.

Subcase (a). Let v be adjacent to only one vertex of $N(u)$.

Without loss of generality, let v be adjacent to x_1. Then v is adjacent to x_4 and x_5. Now w is adjacent to x_1 or not adjacent to x_1. If w is adjacent to x_1, then w is adjacent to x_2 and x_3 (or equivalently x_4 and x_5), or x_2 (or equivalently x_3) and x_4 (or equivalently x_5). If w is adjacent to x_2 and x_3, then x_2 is not adjacent to x_4. Hence x_2 must be adjacent to x_4 (or equivalently x_5) and then x_4 is adjacent to x_1 and x_2, which is a contradiction. Hence no such graph exists. If w is adjacent to x_1 and x_4, then x_2 is not adjacent to x_4. Hence x_2 is adjacent to x_3 or x_5. Then in both the cases no graph exists. If w is not adjacent to x_1. Without loss of generality, let w be adjacent to x_3, x_5 and x_4. Then x_2 is adjacent to x_1 or x_4 or x_5. If x_2 is adjacent to x_1 or x_4 or x_5 then no graph exists. If x_2 is adjacent to x_3, then x_4 is adjacent to x_3 or x_3, or x_4. Then also no graph exists.
Subcase (b). Let \(v \) be adjacent to two vertices of \(N(u) \) say \(x_1 \) and \(x_2 \).

Without loss of generality, let \(v \) be adjacent to \(x_4 \). Now \(w \) is adjacent to \(x_1 \) (or equivalently \(x_2 \)) or not adjacent to \(x_1 \) (or equivalently \(x_2 \)). If \(w \) is adjacent to \(x_1 \), then \(x_3 \) is adjacent to \(x_1 \) (or equivalently \(x_2 \)) or \(w \) or \(x_5 \). Then in all the cases, \(\{u,v,w\} \) is not a complementary connected dominating set, which is a contradiction. If \(w \) is not adjacent to \(x_1 \), then without loss of generality, let \(w \) be adjacent to \(x_3 \), \(x_4 \) and \(x_5 \). Now \(x_5 \) is adjacent to \(x_3 \) and \(x_4 \) (or) \(x_1 \) and \(x_4 \) (or) \(x_1 \) and \(x_5 \) (or) \(x_2 \) and \(x_5 \). In all the cases, \(\{u,v,w\} \) is not a complementary connected dominating set, which is a contradiction.

Subcase (c). Let \(v \) be adjacent to all the vertices of \(N(u) \).

Now \(x_3 \) is adjacent to \(x_1 \) (or equivalently \(x_2 \)), or \(w \) (or equivalently \(x_4 \) or \(x_5 \)). Since \(G \) is cubic, \(x_2 \) cannot be adjacent to \(x_5 \) (or equivalently \(x_1 \)). Hence \(x_2 \) must be adjacent to \(w \). If \(x_1 \) is adjacent to \(w \) then \(w \) is adjacent to \(x_1 \) and \(x_3 \) (or) \(x_4 \) (or) \(x_1 \) and \(x_5 \). Since \(G \) is cubic, \(w \) cannot be adjacent to \(x_1 \) and \(x_3 \). Also \(w \) cannot be adjacent to \(x_1 \) and \(x_5 \). Hence \(w \) must be adjacent to \(x_4 \) and \(x_3 \). Then \(x_4 \) must be adjacent to \(x_3 \) and \(x_5 \) is adjacent to \(x_4 \). Consequently, \(\{u,v,w\} \) is not a complementary connected dominating set, which is a contradiction.

Case 2. \(<S> = K_1 \cup K_1 \).

Let \(uv \) be an edge. Without loss of generality, let \(u \) be adjacent to \(x_1 \) and \(x_2 \). Now \(w \) is adjacent to \(x_1 \), \(x_2 \) and anyone of \(\{x_3, x_4, x_5\} \) or \(w \) is adjacent to \(x_1 \) (or equivalently \(x_2 \)) and any two of \(\{x_3, x_4, x_5\} \). If \(w \) is adjacent to \(x_1 \), \(x_2 \) and \(x_3 \), then \(x_4 \) is adjacent to \(x_3 \) (or equivalently \(x_2 \)) or not adjacent to \(x_1 \) (or equivalently \(x_3 \)). If \(x_4 \) is not adjacent to \(x_1 \) (or equivalently \(x_3 \)), then \(x_4 \) is adjacent to \(x_5 \) and \(v \). Also \(x_3 \) is adjacent to \(x_1 \) and \(x_2 \) is adjacent to \(x_3 \). Hence \(G \equiv G_1 \). If \(x_4 \) is adjacent to \(x_1 \), then \(x_3 \) is adjacent to \(x_2 \) and \(x_4 \) is adjacent to \(x_3 \) and \(x_5 \). Hence \(G \equiv G_1 \). If \(x_4 \) is adjacent to \(x_1 \), then \(x_1 \) is adjacent to \(x_2 \), \(x_3 \) and \(v \) and \(x_5 \) is adjacent to \(x_4 \) and \(x_2 \) is adjacent to \(v \). Hence \(G \equiv G_1 \). If \(w \) is adjacent to \(x_1 \), \(x_2 \) and \(x_3 \), then \(x_4 \) is adjacent to \(x_1 \) or not adjacent to \(x_1 \). If \(x_5 \) is adjacent to \(x_2 \) and \(x_4 \) then \(x_3 \) is adjacent to \(x_2 \) and \(v \). Also \(x_4 \) is adjacent to \(x_1 \). Hence \(G \equiv G_1 \).

Case 3. \(<S> = P_5 \).

Let \(v \) be adjacent to \(u \) and \(w \). Without loss of generality, let \(v \) be adjacent to \(x_1 \) and \(u \) be adjacent to \(x_4 \). Now \(w \) is adjacent to \(u \), \(w \) and anyone of \(\{x_3, x_5, x_6\} \) or \(w \) is adjacent to \(x_1 \) (or equivalently \(x_2 \)) and any two of \(\{x_3, x_5, x_6\} \). If \(x_2 \) is adjacent to \(u \), \(w \) and \(x_1 \) then \(x_4 \) is adjacent to \(w \) (or equivalently \(u \)) or not adjacent to \(w \) (or equivalently \(u \)). If \(x_4 \) is adjacent to \(w \) (or equivalently \(u \)), then \(x_5 \) is adjacent to \(x_3 \) or not adjacent to \(x_4 \). If \(x_2 \) is adjacent to \(x_5 \), \(x_3 \) and \(x_4 \), then \(x_5 \) is adjacent to \(x_3 \) and \(x_4 \) is adjacent to \(x_2 \). Hence \(G \equiv G_1 \). If \(x_5 \) is not adjacent to \(x_4 \), then \(x_4 \) is adjacent to \(x_1 \), \(x_3 \), and \(x_5 \), so that \(\{u,v,w\} \) is not a complementary connected dominating set, which is a contradiction. If \(x_4 \) is not adjacent to \(w \) (or equivalently \(u \)), then \(x_4 \) is adjacent to \(x_3 \), \(x_1 \) and \(x_3 \). Also \(x_3 \) is adjacent to \(x_2 \) and \(x_5 \) is adjacent to \(x_1 \). Hence \(G \equiv G_1 \). If \(x_2 \) is adjacent to \(w \), \(x_3 \) and \(x_4 \), then \(x_5 \) is adjacent to \(w \) (or) not adjacent to \(w \). If \(x_3 \) is adjacent to \(w \), \(x_1 \), \(x_4 \), then \(x_5 \) is adjacent to \(x_4 \) and \(x_4 \). Hence \(G \equiv G_1 \). If \(x_4 \) is not adjacent to \(w \), then \(x_5 \) is adjacent to any three of \(\{x_1, u, x_5, x_4\} \). Let \(x_1 \) be adjacent to \(x_2 \), \(u \), \(x_3 \). Also \(x_4 \) is adjacent to \(x_1 \) and \(x_5 \). Hence \(G \equiv G_1 \).

3 Cubic graphs of order 10

Throughout this section, \(G \) is a connected cubic graph on 10 vertices with \(V(G) = \{u, v, w, x_1, x_2, x_3, x_4, x_5, x_6\} \). Let \(S = \{u, v, w\} \) be a minimum complementary connected dominating set. Let \(S_1 = N(u) = \{x_1, x_2, x_3\} \). Clearly \(<S> \neq K_3 \) or \(P_5 \). Hence \(<S> = K_2 \cup K_1 \) or \(\overline{K_1} \). If \(<S> = K_2 \cup K_1 \) then \(uv \) be the edge in \(<S> \). Let \(x_4 \) and \(x_5 \) be the two remaining vertices adjacent to \(v \) and also \(x_4 \) and \(x_5 \) are the remaining two vertices adjacent to \(w \). Let \(S_2 = \{x_4, x_5\} \) and \(S_3 = \{x_4, x_5\} \).
Lemma 3.1. Let G be a connected cubic graph on 10 vertices with $V(G)=\{u, v, w, x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$. Let $S = \{u, v, w\}$ be a minimum complementary connected dominating set. Let $S_1 = N(u) = \{x_1, x_2, x_3\}$. If $<S> = K_2 \cup K_1$ and $<S_1> = P_3$, then G is isomorphic to G_1 given in Figure 3.1.

![Figure 3.1](image)

Proof. Without loss of generality, let $<S_1> = P_3 = \{x_1, x_2, x_3\}$. We consider the following three cases.

Case 1. $<S_2> = <S_3> = K_2$.

Without loss of generality, let x_1 be adjacent to x_7. Since G is cubic, x_3 is adjacent to x_4 and x_5 is adjacent to x_6. Hence $G \cong G_1$.

Case 2. $<S_2> = K_2$ and $<S_3> = K_2$.

Let x_5 be adjacent to x_6 and x_7 or x_1 and x_3 or x_5 (or equivalently x_7) and x_1 (or equivalently x_6). In all the above situation S fails to be a complementary connected dominating set, which is a contradiction. Hence no graph exists.

Case 3. $<S_2> = <S_3> = K_2$.

Since G is cubic, without loss of generality let x_1 be adjacent to x_6. Also x_4 is adjacent to x_4 (or equivalently x_3) and x_5 is adjacent to x_3 and x_3 and also x_7 is adjacent to x_4. Hence $G \cong G_1$.

Lemma 3.2. If $<S> = K_2 \cup K_1$ and $<S_1> = K_3$, then G is isomorphic to any one of the graphs given in Figure 3.2.

![Figure 3.2](image)
Characterization of complementary connected domination number of a graph

Proof. We consider the following three cases.

Case 1. \(<S_2> = <S_1> = K_2 \).

Since \(G \) is cubic, the three vertices in \(S_1 \) are to be incident with 6 edges. But the four vertices in \(S_2 \) and \(S_1 \) can be incident with four edges. This is a contradiction. Hence no graph exists in this case.

Case 2. \(<S_2> = K_2 \) and \(<S_1> = K_2 \).

Now \(x_1 \) is adjacent to \(x_6 \) and \(x_7 \) or \(x_4 \) and \(x_5 \) or \(x_6 \) (or equivalently \(x_7 \)). If \(x_1 \) is adjacent to \(x_6 \) and \(x_7 \) then \(\{u, v, w\} \) is not a complementary connected dominating set, which is a contradiction. Hence no graph exists. If \(x_1 \) is adjacent to \(x_4 \) and \(x_6 \), then \(x_2 \) is adjacent to \(x_5 \). If \(x_2 \) is adjacent to \(x_5 \) and \(x_6 \), then \(x_3 \) is adjacent to \(x_5 \) and \(x_7 \). Hence \(G \equiv G_2 \). If \(x_1 \) is adjacent to \(x_4 \) and \(x_6 \) then \(x_2 \) is adjacent to \(x_7 \) and \(x_5 \) or \(x_4 \) and \(x_5 \). If \(x_2 \) is adjacent to \(x_5 \) and \(x_6 \), then \(x_3 \) is adjacent to \(x_5 \) and \(x_7 \). Hence \(G \equiv G_2 \). If \(x_2 \) is adjacent to \(x_4 \) and \(x_5 \), then \(x_3 \) is adjacent to \(x_3 \) and \(x_7 \). Hence \(G \equiv G_2 \).

Case 3. \(<S_2> = <S_1> = K_2 \).

\(x_1 \) is adjacent to \(x_6 \) and \(x_7 \) (or equivalently \(x_4 \) and \(x_5 \)) or \(x_4 \) (or equivalently \(x_7 \)) and \(x_4 \) (or equivalently \(x_7 \)). If \(x_1 \) is adjacent to \(x_6 \) and \(x_7 \), then \(x_2 \) is adjacent to \(x_4 \) and \(x_5 \) or \(x_6 \) (or equivalently \(x_7 \)) and \(x_4 \) (or equivalently \(x_7 \)). If \(x_2 \) is adjacent to \(x_4 \) and \(x_5 \), then \(x_3 \) is adjacent to \(x_7 \) and \(x_5 \) and also \(x_3 \) is adjacent to \(x_7 \). Hence \(G \equiv G_2 \). If \(x_1 \) is adjacent to \(x_4 \) and \(x_5 \), then \(x_2 \) is adjacent to \(x_4 \) and \(x_5 \) or \(x_6 \) and \(x_5 \) or \(x_4 \) (or equivalently \(x_7 \)) or \(x_4 \) and \(x_7 \) (or equivalently \(x_5 \)). If \(x_3 \) is adjacent to \(x_4 \) and \(x_6 \), then \(x_3 \) is adjacent to \(x_7 \) and \(x_5 \) which is a contradiction. Hence no graph exists. If \(x_2 \) is adjacent to \(x_3 \) and \(x_5 \), then \(x_3 \) is adjacent to \(x_4 \) and \(x_6 \) or \(x_3 \) and \(x_5 \) or \(x_4 \) and \(x_6 \) (or equivalently \(x_4 \) and \(x_5 \)). If \(x_3 \) is adjacent to \(x_5 \) and \(x_6 \), then \(x_3 \) is adjacent to \(x_7 \) which is a contradiction and no graph exists. If \(x_1 \) is adjacent to \(x_5 \) and \(x_5 \), then \(x_4 \) is adjacent to \(x_6 \) which is a contradiction and no graph exists. If \(x_1 \) is adjacent to \(x_5 \) and \(x_6 \), then \(x_4 \) is adjacent to \(x_5 \) and \(x_7 \) and then \(x_5 \) is adjacent to \(x_6 \) and \(x_7 \) and \(x_7 \) is adjacent to \(x_5 \) and \(x_7 \). Hence \(G \equiv G_2 \). If \(x_2 \) is adjacent to \(x_4 \) and \(x_5 \), then \(x_3 \) is adjacent to \(x_5 \) and \(x_6 \) or \(x_4 \). Hence \(G \equiv G_2 \). If \(x_2 \) is adjacent to \(x_4 \) and \(x_5 \), then \(x_4 \) is adjacent to \(x_5 \) and \(x_6 \) or \(x_5 \) and \(x_5 \) or \(x_4 \). Hence \(G \equiv G_2 \). If \(x_2 \) is adjacent to \(x_4 \) and \(x_5 \), then \(x_3 \) is adjacent to \(x_5 \) and \(x_6 \) and \(x_7 \) or \(x_5 \) and \(x_7 \). Hence \(G \equiv G_2 \). If \(x_2 \) is adjacent to \(x_5 \) and \(x_6 \), then \(x_3 \) is adjacent to \(x_5 \) and \(x_7 \). Hence \(G \equiv G_2 \). If \(x_2 \) is adjacent to \(x_5 \) and \(x_6 \), then \(x_3 \) is adjacent to \(x_5 \) and \(x_7 \). Hence \(G \equiv G_2 \). Hence no graph exists.

Lemma 3.3. If \(<S> = K_2 \cup K_1 \) and \(<S_1> = K_2 \cup K_1 \), then \(G \) is isomorphic to either \(G_3 \) given in Figure 3.1 or \(G_4 \) given in Figure 3.3.

\[\text{Figure 3.3} \]
Proof. Let \(x_1x_2 \) be the edge in \(<S_1> \). We consider the following three cases.

Case 1. \(<S_2> = <S_1> = K_2 \).

Now \(x_1 \) is adjacent to \(x_4 \) and \(x_7 \) (or equivalently \(x_4 \) and \(x_3 \)) or \(x_4 \) and \(x_6 \) (or equivalently \(x_5 \) and \(x_7 \)). If \(x_4 \) is adjacent to \(x_4 \) and \(x_7 \), then \(x_3 \) is adjacent to \(x_4 \) (or equivalently \(x_3 \)). This implies that \(x_4 \) is adjacent to \(x_4 \), which is a contradiction. Hence no graph exists. If \(x_1 \) is adjacent to \(x_4 \) and \(x_6 \), then \(x_1 \) is adjacent to \(x_6 \) (or equivalently \(x_7 \)). Then \(x_2 \) is adjacent to \(x_7 \). Hence \(G \cong G_1 \).

Case 2. \(<S_2> = K_2 \) and \(<S_1> = \bar{K}_2 \).

Since \(G \) is cubic \(x_3 \) is adjacent to \(x_4 \) and \(x_5 \) or \(x_4 \) (or equivalently \(x_3 \)) and \(x_4 \) (or equivalently \(x_6 \)). If \(x_3 \) is adjacent to \(x_4 \) and \(x_3 \), then \(x_4 \) is adjacent to \(x_1 \) (or equivalently \(x_2 \)) or \(x_6 \) (or equivalently \(x_5 \)). If \(x_4 \) is adjacent to \(x_1 \), then \(x_3 \) is adjacent to \(x_4 \) (or equivalently \(x_5 \)) and \(x_4 \) is adjacent to \(x_2 \). Hence \(G \cong G_1 \). If \(x_4 \) is adjacent to \(x_1 \), then \(x_5 \) is adjacent to \(x_1 \) (or equivalently \(x_2 \)) and then \(x_2 \) is adjacent to \(x_1 \). Hence \(G \cong G_1 \). If \(x_3 \) is adjacent to \(x_4 \) and \(x_4 \), then \(x_3 \) is adjacent to \(x_1 \) and \(x_2 \) (or equivalently \(x_2 \)). If \(x_3 \) is adjacent to \(x_1 \) and \(x_2 \), then \(x_4 \) is adjacent to \(x_5 \) which is a contradiction. Hence no graph exists. If \(x_3 \) is adjacent to \(x_1 \) and \(x_3 \), then \(x_3 \) is adjacent to \(x_4 \). Hence \(G \cong G_1 \).

Case 3. \(<S_2> = <S_1> = \bar{K}_2 \).

Now \(x_1 \) is adjacent to \(x_1 \) and \(x_5 \) (or equivalently \(x_6 \) and \(x_7 \)) or \(x_4 \) and \(x_7 \) (or equivalently \(x_1 \) and \(x_7 \)). If \(x_2 \) is adjacent to \(x_4 \) and \(x_5 \), then \(x_2 \) is adjacent to \(x_1 \) (or equivalently \(x_2 \)) and then \(x_2 \) is adjacent to \(x_1 \). Hence \(G \cong G_1 \). If \(x_1 \) is adjacent to \(x_1 \) and \(x_5 \), then \(x_1 \) is adjacent to \(x_1 \) and \(x_6 \) and \(x_7 \). Hence \(G \cong G_1 \). If \(x_1 \) is adjacent to \(x_1 \) and \(x_6 \), then \(x_1 \) is adjacent to \(x_6 \) and \(x_7 \). Hence \(G \cong G_1 \). If \(x_1 \) is adjacent to \(x_1 \) and \(x_7 \), then \(x_1 \) is adjacent to \(x_1 \). Hence \(G \cong G_1 \). If \(x_1 \) is adjacent to \(x_1 \) and \(x_2 \), then \(x_1 \) is adjacent to \(x_1 \), which is a contradiction. Hence no graph exists.

Lemma 3.4. There is no connected cubic graph on 10 vertices with \(S \cong \bar{K}_2 \) and \(S_1 \cong P_5 \).

Proof. If \(S \cong \bar{K}_2 \), then \(v \) can be adjacent to two of the three vertices not in \(N(u) \). It is adjacent to two vertices say \(x_4 \) and \(x_6 \). Let \(S_2 = \{x_4, x_6\} \), then \(w \) be adjacent to two other vertices say \(x_5, x_7 \). Let \(S_1 = \{x_5, x_7\} \). We consider the following three cases.

Case 1. \(S \cong S_1 \cong K_2 \).

Now \(x_1 \) is adjacent to anyone of \(\{x_4, x_5, v\} \) (or equivalently any one of \(\{x_4, x_6, w\} \)). Since \(G \) is cubic, without loss of generality let \(x_1 \) be adjacent to \(v \), and \(x_3 \) be adjacent to \(w \). Then the remaining five vertices must be incident with one vertex, which is a contradiction. Hence no graph exists.

Case 2. \(S \cong K_2 \) and \(S_1 \cong \bar{K}_2 \).

Let \(x_4x_7 \) be the edge in \(S_2 \). If \(v \) is adjacent to \(x_4 \) (or equivalently \(x_3 \)), then \(v \) is adjacent to \(x_1 \) and \(x_3 \) (or \(x_4 \) and \(x_5 \)) (or \(x_4 \) (or equivalently \(x_5 \)) and \(x_7 \) (or equivalently \(x_3 \)).

Subcase (a). If \(x_4 \) is adjacent to \(x_4 \) and \(x_5 \) then \(x_4 \) is adjacent to \(x_4 \) (or equivalently \(x_3 \)) and \(w \) is adjacent to \(x_5 \), which is a contradiction. Hence no graph exists.

Subcase (b). If \(x_5 \) is adjacent to \(x_5 \) and \(x_5 \) then \(x_5 \) is adjacent to \(x_5 \) and \(w \). If \(x_5 \) is adjacent to \(x_5 \) then \(w \) is adjacent to \(x_5 \), which is a contradiction. Hence no graph exists. If \(x_5 \) is adjacent to \(w \) then \(x_5 \) is adjacent to \(x_5 \), which is a contradiction. Hence no graph exists.

Subcase (c). If \(x_5 \) is adjacent to \(x_5 \) and \(x_5 \) then \(x_5 \) is adjacent to \(x_5 \) (or equivalently \(x_3 \)). Then \(w \) is adjacent to \(x_5 \), which is a contradiction. Hence no graph exists.

Case 3. \(S \cong S_1 \cong \bar{K}_2 \).

Now \(v \) is adjacent to \(x_1 \) (or equivalently \(x_4 \)) or \(x_6 \) (or equivalently \(x_5 \)) which is impossible. Hence no graph exists.
Lemma 3.5. If \(< S > = \overline{K}_3 \) and \(< S_1 > = K_3 \cup K_1 \), then \(G \cong G_3 \) given in Figure 3.3 or \(G \cong G_1 \) given in Figure 3.1

Proof. Let \(x_1x_2 \) be the edge in \(< S_1 > \). We consider the following three cases.

Case 1. \(< S_2 > = < S_1 > = K_3 \).

\(x_1 \) is adjacent to any one of the vertices \(\{x_4, x_5, v\} \) (or equivalently any one of \(\{x_4, x_5, w\} \)) without loss of generality, let \(x_1 \) be adjacent to \(w \). Then it can be verified that no cubic graph exists satisfying the hypothesis.

Case 2. \(< S_2 > = K_3 \) and \(< S_1 > = \overline{K}_3 \).

Now \(x_3 \) is adjacent to any one of \(\{v, x_4, x_5\} \) (or \(w \) (or) \(x_4 \) (or equivalently \(x_5 \)). If \(x_1 \) is adjacent to \(v \), then \(w \) is adjacent to \(x_3 \) or \(x_4 \) (or equivalently \(x_5 \)) or \(x_2 \). If \(w \) is adjacent to \(x_1 \) then \(x_1 \) is adjacent to \(x_7 \) and then \(x_4 \) is adjacent to \(x_3 \) and \(x_4 \) and also \(x_5 \) is adjacent to \(x_1 \). Hence by Lemma 3.3, \(G \cong G_6 \). If \(w \) is adjacent to \(x_4 \), then \(x_4 \) is adjacent to \(x_2 \) and \(x_1 \) and then \(x_3 \) is adjacent to \(x_2 \) and \(x_3 \) and also \(x_3 \) is adjacent to \(x_5 \). Hence \(G \cong G_6 \), which falls under Lemma 3.3. If \(w \) is adjacent to \(x_3 \), then \(x_3 \) is adjacent to \(x_3 \) or \(x_4 \) (or equivalently \(x_1 \)). If \(x_1 \) is adjacent to \(x_3 \), then \(x_1 \) is adjacent to \(x_6 \) and \(x_5 \) which is a contradiction. Hence no graph exists. If \(x_4 \) is adjacent to \(x_6 \), then \(x_5 \) is adjacent to \(x_6 \) and \(x_5 \) which is a contradiction. Hence no graph exists. If \(x_1 \) is adjacent to \(w \), then \(x_3 \) is adjacent to \(x_3 \) and then \(x_1 \) is adjacent to \(x_3 \) and \(x_5 \) and also \(x_6 \) is adjacent to \(x_3 \) and \(v \). Hence \(G \cong G_5 \), which falls under Lemma 3.3. If \(x_1 \) is adjacent to \(x_3 \), then \(x_4 \) is adjacent to \(x_4 \) (or equivalently \(x_3 \)) and \(x_5 \). If \(x_1 \) is adjacent to \(x_4 \) then \(x_3 \) is adjacent to \(x_3 \) and \(x_5 \). Hence \(G \cong G_5 \), which falls under Lemma 3.3. If \(x_1 \) is adjacent to \(x_3 \) then \(x_1 \) is adjacent to \(x_4 \) (or equivalently \(x_3 \)) and \(x_5 \) and \(x_5 \) is adjacent to \(x_3 \). Hence \(G \cong G_1 \), as in Figure 3.1, which falls under Lemma 3.1. If \(w \) is adjacent to \(x_3 \), then \(x_1 \) and \(x_3 \) get a contradiction and hence no graph exists. If \(x_4 \) is adjacent to \(x_4 \), then \(x_3 \) is adjacent to \(x_4 \) and then \(x_1 \) is adjacent to \(x_4 \) and then \(x_1 \) is adjacent to \(w \) and \(x_3 \) is adjacent to \(v \). Hence \(G \cong G_1 \) given in Figure 3.1. If \(x_4 \) is adjacent to \(x_2 \) then also we get a contradiction and hence no graph exists.

Case 3. \(< S_2 > = < S_1 > = \overline{K}_3 \).

If \(x_1 \) is adjacent to \(v \) (or equivalently \(w \)) or \(x_4 \) (or equivalently \(x_5 \)) (or equivalently \(x_3 \)) then \(x_3 \) is adjacent to \(x_3 \). In all the cases no new graph exists.

Lemma 3.6. There is no connected cubic graph on 10 vertices with \(< S > = \overline{K}_3 \) and \(< S_1 > = \overline{K}_3 \).

Proof. We consider the following three cases.

Case 1. \(< S_2 > = < S_1 > = K_3 \).

Let \(x_1x_2 \) be the edge in \(< S_1 > \) and \(x_4x_5 \) be the edge in \(< S_1 > \). Now \(x_1 \) is adjacent to any one of \(\{v, x_4, x_5\} \) (or equivalently any two of \(\{w, x_4, x_5\} \) or any of \(\{v, w, x_4, x_5\} \) and anyone of \(\{w, x_4, x_5\} \). In all the above cases, \(\{u,v,w\} \) is not a complementary connected dominating set, which is a contradiction.

Case 2. \(< S_2 > = K_3 \) and \(< S_1 > = \overline{K}_3 \).

Let \(w \) be adjacent to any one of \(\{x_3, x_2, x_1\} \). Let \(w \) be adjacent to \(x_1 \). In this case also \(\{u,v,w\} \) is not a complementary connected dominating set, which is a contradiction.

Case 3. \(< S_2 > = < S_1 > = \overline{K}_3 \).

In this case, \(v \) is adjacent to \(x_1 \) (or equivalently \(x_3 \)) or \(x_4 \) (or equivalently \(x_5 \)). In the cases, \(\{u,v,w\} \) is not a complementary connected dominating set, which is a contradiction.

Theorem 3.7. Let \(G \) is connected cubic graph on 10 vertices. Then \(\gamma_c = \chi = 3 \) if and only if \(G \) is isomorphic to any one of graphs given in Figures 3.3, 3.2 and 3.3.

Proof. If \(G \) is any one of the graphs given in Figure 3.1, 3.2 and 3.3, then clearly \(\gamma_c = \chi = 3 \). Conversely if \(\gamma_c = \chi = 3 \), then the proof follows from the Lemmas 3.1 to 3.6.
4 Cubic graphs on 12 vertices

Let G be a connected cubic graph on 12 vertices with V(G)={u, v, w, x₁, x₂, x₃, x₄, x₅, x₆, x₇, x₈, x₉}. Let S = {u, v, w} be a complementary connected dominating set.

Let <S₁> = N(u) = {x₁, x₂, x₃}, Let <S₂> = N(v) = {x₄, x₅, x₆} and <S₃> = N(w) = {x₇, x₈, x₉}. Then we consider the following cases:

Case 1: <S₁> = <S₂> = <S₃> = P₃.

Case 2: <S₁> = <S₂> = P₃ and <S₃> = K₂∪K₁.

Case 3: <S₁> = <S₂> = P₃ and <S₃> = K₃.

Case 4: <S₁> = P₃ and <S₂> = <S₃> = K₂∪K₁.

Case 5: <S₁> = P₃ and <S₂> = K₃.

Case 6: <S₁> = <S₂> = K₂∪K₁, <S₃> = K₃.

Case 7: <S₁> = <S₂> = K₂∪K₁, <S₃> = K₃.

Case 8: <S₁> = <S₂> = <S₃> = K₂∪K₁.

Case 9: <S₁> = <S₂> = <S₃> = K₃.

Case 10: <S₁> = K₂∪K₁, <S₂> = <S₃> = K₃.

Lemma 4.1. If <S₁> = <S₂> = <S₃> = P₃ then G is isomorphic to G₁ given in Figure 4.1.

Figure 4.1

Proof. Let <S₁> = P₃ = x₁, x₂, x₃, <S₂> = P₃ = x₄, x₅, x₆ and <S₃> = P₃ = x₇, x₈, x₉. Without loss of generality, let x₁ be adjacent to x₄. Since G is cubic, x₃ must be adjacent to x₇ or x₈. Without loss of generality, let x₃ be adjacent to x₆. Then x₅ must be adjacent to x₉. Hence G ≅ G₁.

Lemma 4.2. If <S₁> = <S₂> = P₃ and <S₃> = K₂∪K₁ then G is isomorphic to the graph G₂ given in Figure 4.2.

Proof. Let <S₁> = P₃ = x₁, x₂, x₃, <S₂> = P₃ = x₄, x₅, x₆. Let x₃x₄ be the edge in <S₂>. Now x₇ is adjacent to anyone of {x₁, x₃, x₆, x₇}. Without loss of generality, let x₇ be adjacent to x₁. Then x₄ is adjacent to x₃ or anyone of {x₄, x₆}. If x₃ is adjacent to x₇ then x₇ must be adjacent to x₄ and x₆, which is a contradiction. Hence no graph exists. If x₃ is adjacent to x₄, then x₇ must be adjacent to x₅ and x₆. Hence G ≅ G₂.
Lemma 4.3. There exists no connected cubic graph on 12 vertices with \(< S_1> = < S_2> = P_3 \) and \(< S_3> = \overline{K}_3 \).

Proof. Let \(< S_1> = P_3 = x_1, x_2, x_3 \), \(< S_2> = P_3 = x_4, x_5, x_6 \). Now \(x_7 \) is adjacent to one of \(\{ x_1, x_3 \} \) and one of \(\{ x_4, x_6 \} \) (or) \(x_7 \) is adjacent to \(x_1 \) and \(x_3 \) (or equivalently \(x_4 \) and \(x_6 \)). In both the cases cubic graph does not exists.

Lemma 4.4. If \(< S_1> = P_3 \) and \(< S_2> = < S_3> = K_2 \cup K_1 \), then \(G \) is isomorphic to the graph \(G_2 \) given in Figure 4.2.

Proof. Let \(< S_1> = x_1, x_2, x_3 \). Let \(x_4x_5 \) be the edge in \(< S_2> \) and \(x_7x_8 \) be the edge in \(< S_3> \). We consider the following two cases.

Case 1. Let \(x_1 \) be adjacent to any one of \(\{ x_4, x_5, x_7, x_8 \} \). Without loss of generality, let \(x_1 \) be adjacent to \(x_4 \). Since \(G \) is cubic \(x_3 \) is adjacent to \(x_6 \) or \(x_7 \) (or equivalently \(x_8 \)). If \(x_3 \) is adjacent to \(x_6 \) \(x_5 \) is adjacent to \(x_3 \) or \(x_4 \). If \(x_5 \) is adjacent to \(x_4 \), then \(x_4 \) is adjacent to \(x_7 \). Hence no graph exists. If \(x_7 \) is adjacent to \(x_6 \), then \(x_6 \) is adjacent to \(x_4 \) and \(x_3 \) is adjacent to \(x_8 \). Hence \(G \equiv G_3 \) given in Figure 4.2. If \(x_7 \) is adjacent to \(x_3 \) (or equivalently \(x_8 \)) then since \(G \) is cubic \(x_4 \) must be adjacent to \(x_6 \) and \(x_5 \) is adjacent to \(x_4 \) and \(x_6 \). Hence \(G \equiv G_2 \) given in Figure 4.2.

Case 2. Let \(x_1 \) be adjacent to any one of \(\{ x_4, x_5 \} \). Without loss of generality, let \(x_1 \) be adjacent to \(x_4 \). Now \(x_5 \) is adjacent to \(x_3 \) or \(x_7 \) (or equivalently \(x_8 \)) or \(x_9 \). Since \(G \) is cubic \(x_2 \) is not adjacent to \(x_3 \). If \(x_4 \) is adjacent to \(x_5 \), then \(x_5 \) is adjacent to \(x_8 \) or \(x_9 \). If \(x_4 \) is adjacent to \(x_8 \), then \(x_8 \) is adjacent to \(x_2 \) and \(x_5 \), which is a contradiction. Hence no graph exists. If \(x_7 \) is adjacent to \(x_5 \), then \(x_5 \) is adjacent to \(x_6 \). If \(x_7 \) is adjacent to \(x_3 \), then \(x_6 \) is adjacent to \(x_8 \). Hence \(G \equiv G_2 \) given in Figure 4.2. If \(x_7 \) is adjacent to \(x_3 \), then \(x_5 \) is adjacent to \(x_6 \) and \(x_6 \) is adjacent to \(x_8 \). Hence \(G \equiv G_2 \) given in Figure 4.2.

Lemma 4.5. If \(< S_1> = P_3 \) and \(< S_2> = \overline{K}_3 \) and \(< S_3> = K_2 \cup K_1 \), then \(G \) is isomorphic to \(G_2 \) given in Figure 4.2.
Proof. If \(< S_1^\rightarrow = x_1x_2x_3 \). Let \(x_3 \) be the edge in \(< S_1^\rightarrow \). Since \(G \) is cubic, \(x_1 \) must be adjacent to any one of \{\(x_4, x_5, x_6 \}\}. Without loss of generality let \(x_1 \) be adjacent to \(x_4 \). We consider the following three cases.

Case 1. \(x_4 \) is adjacent to \(x_5 \). In this case, \(x_5 \) is adjacent to \(x_3 \) (or equivalently \(x_6 \)) and \(x_4 \) and then \(x_6 \) is adjacent to \(x_3 \) and \(x_5 \) which is a contradiction. Hence no graph exists.

Case 2. \(x_4 \) is adjacent to \(x_7 \) (or equivalently \(x_8 \)). In this case, \(x_8 \) is adjacent to \(x_1 \) and \(x_2 \) (or equivalently \(x_3 \)) \(x_9 \) is adjacent to \(x_1 \) and \(x_2 \). Since \(G \) is cubic, \(x_9 \) cannot be adjacent to both \(x_1 \) and \(x_2 \). If \(x_9 \) is adjacent to \(x_3 \) and \(x_4 \), then \(x_3 \) is adjacent to \(x_5 \), \(x_6 \), and \(x_7 \). If \(x_3 \) is adjacent to \(x_5 \), then \(x_4 \) is adjacent to \(x_7 \). Hence \(G \equiv G_2 \) given in Figure 4.2. If \(x_3 \) is adjacent to \(x_4 \), then \(x_3 \) is adjacent to \(x_6 \). Hence \(G \equiv G_2 \) given in Figure 4.2.

Case 3. \(x_4 \) is adjacent to \(x_3 \). Since \(G \) is cubic, \(x_3 \) must be adjacent to any one of \{\(x_5, x_6 \}\}. Let \(x_1 \) be adjacent to \(x_5 \). Now \(x_5 \) is adjacent to both \(x_3 \) and \(x_4 \) (or \(x_6 \)) is adjacent to one of \{\(x_5, x_6 \)\} and \(x_3 \). If \(x_6 \) is adjacent to \(x_3 \) and \(x_4 \), then \(x_3 \) is adjacent to \(x_6 \), which is a contradiction. Hence no graph exists. If \(x_4 \) is adjacent to \(x_3 \) and \(x_6 \), then \(x_3 \) is adjacent to \(x_6 \). Hence, \(G \equiv G_2 \) given in Figure 4.2.

Lemma 4.6. If \(< S_1^\rightarrow = P_3 \) and \(< S_2^\rightarrow = K_5 \), then \(G \) is isomorphic to \(G_2 \) given in Figure 4.2.

Proof. Let \(< S_1^\rightarrow = x_1 x_2 x_3 \). Now \(x_1 \) is adjacent to anyone of \{\(x_4, x_5, x_6, x_7, x_8, x_9 \}\}, without loss of generality, let \(x_1 \) be adjacent to \(x_4 \). Since \(G \) is cubic, \(x_4 \) is adjacent to anyone of \{\(x_5, x_6, x_7 \)\}. Now without loss of generality, let \(x_4 \) be adjacent to \(x_5 \). Then \(x_3 \) is adjacent to \(x_5 \) or anyone of \{\(x_5, x_6 \)\}. If \(x_7 \) is adjacent to \(x_5 \), then \(x_3 \) is adjacent to \(x_4 \) and \(x_6 \). Then \(x_3 \) is adjacent to \(x_4 \) and \(x_6 \) which is a contradiction. Hence no graph exists. If \(x_5 \) is adjacent to \(x_3 \) (or equivalently \(x_6 \)), then \(x_3 \) is adjacent to \(x_8 \) (or equivalently \(x_9 \)). If \(x_3 \) is adjacent to \(x_5 \) and \(x_8 \), then \(x_3 \) is adjacent to \(x_6 \). Hence \(G \equiv G_2 \) given in Figure 4.2.

Lemma 4.7. If \(< S_1^\rightarrow = < S_2^\rightarrow = K_5 \cup K_1 \), and \(< S_1^\leftarrow = K_5 \) \(G \) is isomorphic to \(G_2 \) given in Figure 4.2.

Proof. Let \(x_2 x_3 \) be the edge in \(< S_1^\rightarrow \) and \(x_4 x_5 \) be the edge in \(< S_2^\rightarrow \). Then \(x_1 \) is adjacent to any one of \{\(x_4, x_5 \)\} (or) \(x_4 \) (or) any one of \(\{x_5, x_6, x_7\} \). In all the cases, it can be verified that \(G \) is isomorphic to \(G_2 \) given in Figure 4.2.

Lemma 4.8. If \(< S_1^\rightarrow = < S_2^\rightarrow = K_5 \cup K_1 \), then \(G \) is isomorphic to \(G_2 \) given in Figure 4.2.

Proof. Let \(x_2 x_3 \) be the edge in \(< S_1^\rightarrow \) and \(x_4 x_5 \) be the edge in \(< S_2^\rightarrow \). Then \(x_1 \) is adjacent to anyone of \{\(x_4, x_5, x_7, x_8, x_9 \)\} (or) \(x_4 \) (or) any one of \(\{x_5, x_6, x_7\} \). In all the cases, it can be verified that \(G \) is isomorphic to \(G_2 \) given in Figure 4.2.

Lemma 4.9. If \(< S_1^\rightarrow = < S_2^\rightarrow = K_5 \), then \(G \) is isomorphic to \(G_2 \) given in Figure 4.2.

Proof. In this case, we consider the following two cases, \(x_1 \) is adjacent to any two of \{\(x_4, x_5, x_6 \)\} (or equivalently any two of \{\(x_7, x_8, x_9 \)\}). \(x_1 \) is adjacent to any one of \{\(x_4, x_5, x_6 \)\} and any one of \{\(x_7, x_8, x_9 \)\}. In both cases, it can be verified that \(G \) is isomorphic to \(G_2 \) given in Figure 4.2.

Lemma 4.10. If \(< S_1^\rightarrow = K_5 \cup K_1 \), \(< S_2^\rightarrow = K_5 \), then \(G \) is isomorphic to the graph \(G_2 \) given in Figure 4.2.

Proof. Since \(G \) is cubic, \(x_1 \) is adjacent to any one of \{\(x_4, x_5, x_6, x_7, x_8, x_9 \)\}. Without loss of generality, let \(x_1 \) be adjacent to \(x_4 \). Then \(x_2 \) is adjacent to \(x_4 \) (or) \(x_3 \) is adjacent to one of \{\(x_5, x_6 \)\} (or) \(x_5 \) is adjacent to anyone of \{\(x_7, x_8, x_9 \)\}.

In all the cases, it can be verified that \(G \) is isomorphic to \(G_2 \) given in Figure 4.2.

Theorem 4.11. Let \(G = (V, E) \) be a connected cubic graph on 12 vertices. Then \(G \) is isomorphic to any one of the graphs given in Figures 4.1 and 4.2 for which \(\gamma_c = \chi = 3 \).

Proof. If \(G \) is any one of the graphs given in Figure 4.1 and 4.2, then clearly \(\gamma_c = \chi = 3 \). Conversely, if \(\gamma_c = \chi = 3 \), then the proof follows from the Lemmas 4.1 to 4.10.

G. Mahadevan, A. Selvam Avadyappan and A. Mydeenibibi
References

