On felicitous labelings of $P_{r,2m+1}$, P_{r}^{2m+1} and $C_n \times P_m$

V. Lakshmi alias Gomathi, A. Nagarajan, A. Nellai Murugan
Department of Mathematics, V.O.C. College, Tuticorin, Tamilnadu, INDIA.

Abstract
A simple graph G is called felicitous if there exists a one-to-one function $f : V(G) \rightarrow \{0,1,2, \ldots, q\}$ such that the set of induced edge labels $f^*(uv) = (f(u) + f(v)) \pmod{q}$ are all distinct. In this paper we show that $P_{r,2m+1}$, P_{r}^{2m+1} and $C_n \times P_m$ are felicitous graphs.

Keywords: Labeling, felicitous labeling.

AMS Subject Classification(2010): 05C78.

1 Introduction
In this paper we consider only simple graphs. For notation and terminology, we refer to [2]. Lee, Schmeichel and Shee [7] introduced the concept of a felicitous graph as a generalization of a harmonious graph. A graph G with q edges is called harmonious if there is an injection $f : V(G) \rightarrow \mathbb{Z}_q$, the additive group of integers modulo q such that when each edge xy of G is assigned the label $(f(x) + f(y)) \pmod{q}$, the resulting edge labels are all distinct. A felicitous labeling of a graph G, with q edges is an injection $f : V(G) \rightarrow \{0,1,2, \ldots, q\}$ so that the induced edge labels $f^*(xy) = (f(x) + f(y)) \pmod{q}$ are distinct. Clearly, a harmonious graph is felicitous. An example of a felicitous graph which is not harmonious is the graph $K_{m,n}$, where $m, n > 1$.

Throughout this paper, f denotes a 1-1 function from $V(G)$ to a subset of the set of non-negative integers and for any edge $e = xy \in E(G)$, $f^*(e) = f(x) + f(y)$.

In [4, 5, 6], Kathiresan introduced new classes of graphs denoted by $P_{a,b}$ and P_{a}^b and discussed the magic labeling of $P_{a,b}$ [5]. In [8], the gracefulness of $P_{a,b}$ was discussed. It motivates us to discuss the felicitousness of the graphs $P_{a,b}$ and P_{a}^b.

2 Definitions and basic results

Definition 2.1. Let u and v be two fixed vertices. We connect u and v by means of $b \geq 2$ internally disjoint paths of length $a \geq 2$ each. The resulting graph embedded in a plane is denoted by $P_{a,b}$. Let $v_i^0, v_i^1, v_i^2, \ldots, v_i^a$ be the vertices of the i^{th} copy of the path of length a, where $i = 1, 2, 3, \ldots, b$. $v_i^0 = u$ and $v_i^a = v$ for all i.

We observe that the graph $P_{a,b}$ has $(a - 1)b + 2$ vertices and ab edges.

Definition 2.2. Let a and b be integers such that $a \geq 2$ and $b \geq 2$. Let y_1, y_2, \ldots, y_a be the fixed vertices. We connect the vertices y_i and y_{i+1} by means of b internally disjoint paths P_i of length $i+1$
each, \(1 \leq i \leq a-1\) and \(1 \leq j \leq b.\) Let \(y_i, x_{i,j,1}, x_{i,j,2}, \ldots, x_{i,j,n} y_{i+1}\) be the vertices of the path \(P_i^j,\) \(1 \leq i \leq a-1\) and \(1 \leq j \leq b.\) The resulting graph embedded in a plane is denoted by \(P_a^b,\) where \(V(P_a^b) = \{y_i : 1 \leq i \leq a-j\} \cup \bigcup_{i=1}^{a-1} \bigcup_{j=1}^{b} \{x_{i,j,k} : 1 \leq k \leq i\}\) and \(E(P_a^b) = \bigcup_{i=1}^{a-1} \bigcup_{j=1}^{b} \{y_i x_{i,j,1} : 1 \leq j \leq b\} \cup \bigcup_{i=1}^{a-1} \bigcup_{j=1}^{b} \{x_{i,j,k} x_{i,j,k+1} : 1 \leq k \leq i-1\} \cup \bigcup_{i=1}^{a-1} \{x_{i,j,1} y_{i+1} : 1 \leq j \leq b\}.\)

We observe that the number of vertices of the graph \(P_a^b\) is \(\frac{ba(a-1)}{2} + a\) and the number of edges is \(\frac{b(a-1)(a+2)}{2}.\)

Definition 2.3. A subgraph \(H\) of a graph \(G\) is said to be an even subgraph of \(G,\) if the degree of every vertex of \(H\) is even in \(H.\)

Result 2.4. [1] An even subgraph of a felicitous graph with an even number of edges contains an even number of odd labelled edges.

Result 2.5. [1] No even graph with \(4n + 2\) edges is felicitous.

Lemma 2.6. [1] Let \(G\) be a graph with an odd number of edges and let \(f: V(G) \rightarrow \{0, 1, 2, \ldots, q\}\) be an odd edge labeling of \(G.\) Then, \(f\) is a felicitous labeling for \(G.\)

Proof. As \(f\) is an odd edge labeling of a graph \(G\) with odd number of edges, \(f(E(G)) = \{1, 3, 5, \ldots, 2q-1\}.\) After taking mod \(q, f(E(G)) = \{1, 2, 3, \ldots, q\}.\) So, \(f\) becomes felicitous labeling of \(G.\)

Remark 2.7. It is observed that as in Result 2.5, most of the even graphs are not felicitous. So, finding felicitous graphs with even number of edges is very difficult.

3 Main Results

Theorem 3.1. \(P_{r, 2m+1}\) is a felicitous graph for all values of \(m\) and for odd values of \(r.\)

Proof: Let \(u\) and \(v\) be the origin and the terminal vertices of the \((2m + 1)\) internally disjoint paths of length \(r\) in \(P_{r, 2m+1}.\) Let \(v_0^i, v_1^i, v_2^i, \ldots, v_m^i\) be the vertices of the \(i^{th}\) copy of the path, where \(i = 1, 2, 3, \ldots, 2m + 1,\) \(v_0^i = u\) and \(v_m^i = v\) for all \(i.\) The number of vertices of the graph \(P_{r, 2m+1}\) is \((r - 1)(2m + 1)+2\) and the number of edges is \((2m + 1)r.\)

It is enough to show that \(P_{r, 2m+1}\) admits odd edge labeling.

Define \(f\) on the vertex set of \(P_{r, 2m+1}\) as follows:

- \(f(u) = 0\)
- \(f(v) = (2m + 1)r\)

For \(1 \leq j \leq \frac{r-1}{2},\)

\[
f(v_{2j-1}^i) = (4m + 2)(j - 1) + (2i - 1), \quad 1 \leq i \leq 2m + 1,
\]

\[
f(v_{2j}^i) = \begin{cases} (6m + 2) + (4m + 2)(j - 1) - 4(i - 1), & 1 \leq i \leq m + 1 \\ 6m + (4m + 2)(j - 1) - 4(i - (m + 2)), & m + 2 \leq i \leq 2m + 1 \end{cases}
\]
Let $E_1 = \{ v^i_1 v^j_1 : 1 \leq i \leq 2m + 1 \}$.

$E_2 = \{ v^{m+1}_j v^{m+1}_{j+1}, v^m_j v^m_{j+1}, \ldots, v^1_j v^1_{j+1}, v^{2m+1}_j v^{2m+1}_{j+1}, v^2_m v^2_{j+1}, \ldots, v^{m+2}_j v^{m+2}_{j+1} : 1 \leq j \leq r - 2 \}$.

$E_3 = \{ v^{m+1}_{r-1} v^{m+1}_r, v^{2m+1}_{r-1} v^{2m+1}_r, v^m_{r-1} v^m_r, v^{2m}_{r-1} v^{2m}_r, \ldots, v^2_{r-1} v^2_r, v^{m+2}_r v^{m+2}_{r-1}, v^{1}_r v^{1}_{r-1} \}$.

The labels of the edges in E_1 are $2i - 1, 1 \leq i \leq 2m + 1$.

For $1 \leq j \leq r - 2$, the labels of the edges in E_2 are $2j (2m + 1) + 1, 2j (2m + 1) + 3, \ldots, 2j (2m + 1) - (2m - 1), 2j + 1(2m + 1) - (2m - 3), \ldots, 2j + 1(2m + 1) - 1$.

The labels of the edges in E_3 are $2(r - 1)(2m + 1) + 1, 2(r - 1)(2m + 1) + 3, \ldots, 2r(2m + 1) - 1$.

$f(E_1) = \{1, 3, 5, \ldots, 2(2m + 1) - 1\} = \{1, 3, 5, \ldots, 4m + 1\}$.

$f(E_2) = \{2(2m + 1) + 1, 2(2m + 1) + 3, \ldots, 4(2m + 1) - (2m - 1), 4(2m + 1) - (2m - 3), \ldots, 4(2m + 1) - 1, \ldots, 2(r - 2)(2m + 1) + 1, 2(r - 2)(2m + 1) + 3, \ldots, 2(r - 2)(2m + 1) - 1\} = \{4m + 3, 4m + 5, \ldots, 6m + 5, 6m + 7, \ldots, 8m + 3, \ldots, 2(r - 2)(2m + 1) + 1, 2(r - 2)(2m + 1) + 3, \ldots, 2(r - 1)(2m + 1) - 1\}$.

$f(E_3) = \{2(r - 1)(2m + 1) + 1, 2(r - 1)(2m + 1) + 3, \ldots, 2r(2m + 1) - 1\}$.

Now, $f(E(G)) = f(E_1) \cup f(E_2) \cup f(E_3)$.

$f(E(G)) = \{1, 3, 5, \ldots, 4m + 1, 4m + 3, 4m + 5, \ldots, 6m + 5, 6m + 7, \ldots, 8m + 3, \ldots, 2(r - 2)(2m + 1) + 1, 2(r - 2)(2m + 1) + 3, \ldots, 2(r - 1)(2m + 1) - 1, 2(r - 1)(2m + 1) + 1, 2(r - 1)(2m + 1) + 3, \ldots, 2r(2m + 1) - 1\} = \{1, 3, 5, \ldots, 2q - 1\}$.

Clearly, the above edge labelings are distinct and odd and hence G admits odd edge labeling. Therefore, by Lemma 2.6, $P_r, 2m+1$ is a felicitous graph for all the values of m and for odd values of r.

Example 3.2. A felicitous labeling of $P_{7,5}$ is shown in Figure 1.

![Figure 1: A felicitous labeling of $P_{7,5}$](image)

Corollary 3.3. $P_{a,b}$ is not a felicitous graph when $a \equiv 1(\text{mod}\ 2)$ and $b \equiv 2(\text{mod}\ 4)$.

Proof. The number of edges of \(P_{a,b} = ab = (2k + 1)(4m + 2) = (8km + 4k + 4m + 2) = 4(2km + k + m) + 2 = 4l + 2 \) where \(l = 2km + k + m \) and \(l \in \mathbb{Z}^* \). Further, the graph \(P_{a,b} \) is even. Hence, \(P_{a,b} \) is not a felicitous graph when \(a \equiv 1(\text{mod } 4) \) and \(b \equiv 2(\text{mod } 4) \).

Theorem 3.4. \(P_{2m+1}^{2m+1} \) is a felicitous graph for all values of \(m \) and \(r \equiv 0, 3(\text{mod } 4) \).

Proof. Let \(y_1, y_2, \ldots, y_r \) be the fixed vertices. We connect the vertices \(y_i \) and \(y_{i+1} \) by means of \(2m + 1 \) internally disjoint paths \(P_i^j \) of length \(i+1 \) each, \(1 \leq i < r - 1 \) and \(1 \leq j \leq 2m + 1 \). Let \(y_i, x_{i,j,1}, x_{i,j,2}, \ldots, x_{i,j,r}, y_{i+1} \) be the vertices of the path \(P_i^j \), \(1 \leq i \leq r - 1 \) and \(1 \leq j \leq 2m + 1 \). We observe that the number of vertices of the graph \(P_r^{2m+1} \) is \(\frac{(2m+1)(r(r-1))}{2} + r \) and the number of edges is \(\frac{(2m+1)(r(r-1))}{2} + r \).

It is enough to show that \(P_r^{2m+1} \) admits odd edge labeling. Define \(f \) on \(V(P_r^{2m+1}) \) as follows:

\[
f(y_i) = \left(\frac{i(i+1)}{2} - 1 \right)(2m+1), \quad 1 \leq i \leq r,
\]

\[
f(x_{i,j,1}) = 2j - 1, \quad 1 \leq j \leq 2m + 1,
\]

\[
f(x_{2,j,2}) = \begin{cases} 5(2m+1) - 1 - 4(j - 1), & 1 \leq j \leq m + 1 \\ 5(2m+1) - 3 - 4(j - (m + 2)), & m + 2 \leq j \leq 2m + 1
\end{cases}
\]

For \(1 \leq j \leq 2m + 1, \)

\[
f(x_{i,j,k}) = \begin{cases} f(x_{i-1,j,k}) + (2m+1)i & \text{if } k = 1,2 \text{ and } k + 1 \leq i \leq r - 1; \\ f(x_{i,j-1,k}) + (2m+1) & \text{if } k \text{ is odd, } 3 \leq k \leq r - 1 \text{ and } k \leq i \leq r - 1; \\ f(x_{i,j-2,k}) + (2m+1) & \text{if } k \text{ is even, } 4 \leq k \leq r - 1 \text{ and } k \leq i \leq r - 1.
\end{cases}
\]

Let \(E_1 = \{ y_1, x_{1,1}, x_{1,2}, x_{1,3}, \ldots, y_r, x_{r,2m+1} : 1 \leq i \leq r - 1 \} \), \(E_2 = \{ x_{i,m,k} x_{i,m+1,k+1}, x_{i,m,k} x_{i,m+1,k+1}, \ldots, x_{i,1,1} x_{i,1,k+1}, x_{i,2m-1,1} x_{i,2m+1,k+1}, x_{i,2m,1} x_{i,2m+1,k+1}, \ldots, x_{i,m+2,1} x_{i,m+2,k+1} : 2 \leq i \leq r - 1 \text{ and } 1 \leq k \leq i - 1 \} \),

\(E_3 = \{ y_1, x_{1,1}, y_{1,1}, x_{1,2}, y_{1,2}, x_{1,3}, y_{1,3}, \ldots, x_{r,2m+1}, y_{r,1} : 1 \leq i \leq r - 1 \} \) and \(E_4 = \{ x_{i,m+1,1} y_{i+1}, x_{i,2m+1,1} y_{i+1}, x_{i,m+1,1} y_{i+1}, x_{i,2m+1,1} y_{i+1}, x_{i,1,1} y_{i+1}, x_{i,2m,1} y_{i+1}, \ldots, x_{i,1,1} y_{i+1}, x_{i,2m,1} y_{i+1} : 1 \leq i \leq r - 1 \} \).

The edge labels of \(P^{2m+1}_r \) are as follows:

For \(1 \leq i \leq r - 1 \), the labels of the edges in \(E_1 \) are \((i(i+1) - 2)(2m+1) + 1, (i(i+1) - 2)(2m+1) + 3, \ldots, (i(i+1) - 2)(2m+1) + 2(2m+1) - 1 \).

For \(2 \leq i \leq r - 1 \) and \(1 \leq k \leq i - 1 \), the labels of the edges in \(E_2 \) are \((i(i+1) - 2 + 2k)(2m+1) + 1, (i(i+1) - 2 + 2k)(2m+1) + 3, \ldots, (i(i+1) - 2 + 2k)(2m+1) + 2(2m+1) + 2, \ldots, (i(i+1) + 2k)(2m+1) - 1 \).

For \(1 \leq i \leq r - 1 \) and \(i \equiv 1(\text{mod } 2) \), the labels of the edges in \(E_3 \) are \((i(i+3) - 2)(2m+1) + 1, (i(i+3) - 2)(2m+1) + 3, \ldots, (i(i+3) - 2)(2m+1) + 2(2m+1) - 1 \).
For \(1 \leq i \leq r - 1 \) and \(i \equiv 0 \pmod{2} \), the labels of the edges in \(E_4 \) are \((i(i + 3) - 2)(2m + 1) + 1, (i(i + 3) - 2)(2m + 1) + 3, \ldots , (i(i + 3) - 2)(2m + 1) + 2(2m + 1) - 1\) respectively.

Now, \(f(E(G)) = f(E_1) \cup f(E_2) \cup f(E_3) \cup f(E_4) = \{1, 3, 5, \ldots , 2(2m + 1) - 1, \ 4(2m + 1) + 1, \ 4(2m + 1) + 3, \ldots , 4(2m + 1) + 2(2m + 1) - 1, \ldots , (r(r - 1) - 2)(2m + 1) + 1, (r(r - 1) - 2)(2m + 1) + 3, \ldots \}
\(\cup \{6(2m + 1) + 1, 6(2m + 1) + 3, \ldots , 7(2m + 1), 7(2m + 1) + 2, \ldots , (r(r - 1) - 2) + 2(r - 2)(2m + 1) + 1, (r(r - 1) - 2) + 2(r - 2)(2m + 1) + 3, \ldots , (r(r - 1) + 2(r - 2))(2m + 1) - 1\} \cup \{2(2m + 1) + 1, 2(2m + 1) + 3, \ldots , 2(2m + 1) + 2(2m + 1) - 1, \ldots , (r - 1)(r + 2) - 2)(2m + 1) + 1, (r - 1)(r + 2) - 2)(2m + 1) + 3, \ldots , (r - 1)(r + 2) - 2)(2m + 1) + 1, (r - 1)(r + 2) - 2)(2m + 1) + 1\}
\(= \{1, 3, 5, \ldots , 2q - 1\} \).

Clearly, the above edge labelings are distinct and odd and hence \(G \) admits odd edge labeling. Therefore, \(P_{2m+1} \) is a felicitous graph for all values of \(m \) and \(r \equiv 0, 3 \pmod{4} \). \(\blacksquare \)

Example 3.5. A felicitous labeling of \(P_5 \) is shown in Figure 2.

![Figure 2: A felicitous labeling of \(P_5 \)](image)

Corollary 3.6. \(P_{a} \) is not felicitous when \(b \equiv 2 \pmod{4} \) and (i) \(a \equiv 0 \pmod{4} \) or (ii) \(a \equiv 3 \pmod{4} \).

Proof. (i) Let \(a \equiv 0 \pmod{4} \) and \(b \equiv 2 \pmod{4} \).

The number of edges of \(P_{a} \) is

\[
\begin{align*}
\text{The number of edges of } P_{a} &= \frac{b(a - 1)(a + 2)}{2} = \frac{(4k + 2)(4m - 1)(4m + 2)}{2} \\
&= \frac{2(2k + 1)(4m - 1)(4m + 2)}{2} \\
&= 2(8m^2 + 2m - 1)(2k + 1) \\
&= 2(16m^2k + 8m^2 + 4mk + 2m - 2k - 1)
\end{align*}
\]
\[(1, 3, 2) \]

(ii) Let \(a \equiv 3 \pmod{4} \) and \(b \equiv 2 \pmod{4} \).

The number of edges of \(P_a^b \) is
\[
\frac{(4k + 2)(4m + 3 - 1)(4m + 3 + 2)}{2} = \frac{2(2k + 1)(4m + 2)(4m + 5)}{2} = 2(2k + 1)(2m + 1)(4m + 5)
\]
\[= 2(16m^2k + 28km + 10k + 8m^2 + 14m + 5) \]
\[= 4(8m^2k + 4m^2 + 14mk + 7m + 5k + 2) + 2 = 4l + 2 \quad \text{where } l = 8m^2k + 4m^2 + 14mk + 7m + 5k + 2 \text{ and } l \in \mathbb{Z}^+. \]

Remark 3.7. Let \(G \) be a \((p, q)\) graph. Let \(f \) be a felicitous labeling. Define \(f_1(uv) = f(u) + f(v) \) for every \(uv \in E(G) \). Then \(f^q(uv) = f_i(uv)(mod \ q) \).

Theorem 3.8. \(C_u \times P_m \) is felicitous for \(m \geq 4 \) and \(n \equiv 1 \pmod{2} \).

Proof. Case (i): when \(n = 3 \).

Let \(V(C_u \times P_m) = \{u_{ij} : 1 \leq i \leq 3 \text{ and } 1 \leq j \leq m\} \).

Define \(f : V(C_u \times P_m) \rightarrow \{0, 1, 2, \ldots, q = 6m - 3\} \) by
\[
f(u_{ij}) = \begin{cases} i - 1, & 1 \leq i \leq 3; \\ 3 + i, & 1 \leq i \leq 2 \text{ and } f(u_{23}) = 3; \\ 5 + i, & 1 \leq i \leq 3.
\end{cases}
\]
\[
f(u_{ij}) = \begin{cases} f(u_{i(j-1)}), & 5 \leq j \leq m \text{ and } j \equiv 1 \pmod{2}; \\ f(u_{3(j-1)}) + \sigma_1(i), & 4 \leq j \leq m \text{ and } j \equiv 0 \pmod{2}; \end{cases}
\]
where \(\sigma_1(1) = 3 \).

Let \(E_1 = \{(u_{2j}u_{i1}), (u_{ij}u_{3j}), (u_{ij}u_{2j}) : 1 \leq j \leq m \text{ and } j \equiv 1 \pmod{2}\} \),
\(E_2 = \{(u_{12}u_{23}), (u_{23}u_{12}), (u_{12}u_{23}), (u_{23}u_{12}), (u_{ij}u_{3j}) : 4 \leq j \leq m \text{ and } j \equiv 0 \pmod{2}\} \) and
\(E_3 = \{(u_{11}u_{12}), (u_{12}u_{23}), (u_{23}u_{12}), (u_{12}u_{23}), (u_{i(j+1)}, (u_{1j}u_{3(j+1)}), (u_{3j}u_{3(j+1)}) : 3 \leq j \leq m - 1\}. \)

Now, \(E = E_1 \cup E_2 \cup E_3 \).

The labels of the edges in \(E_1 \) and \(E_2 \) are \(f_i(E_1) \cup f_i(E_2) = \{6j - 5, 6j - 4, 6j - 3 \mid 1 \leq j \leq m\} \).

The labels of the edges in \(E_3 \) are \(f_i(E_3) = \{6j - 2, 6j - 1, 6j \mid 1 \leq j \leq m - 1\} \).

Clearly, \(f(E(G)) = f_i(E_1) \cup f_i(E_2) \cup f_i(E_3) = \{1, 2, 3, \ldots, 6m - 6, 6m - 5, 6m - 4, 6m - 3\}. \)

After taking \((mod \ q) \), \(f^q(E(G)) = f_i(E(G)) (mod \ q) = \{0, 1, 2, 3, \ldots, 6m - 5, 6m - 4\}. \)

Case (ii): when \(n \geq 5 \).
Let \(V(C_n \times P_m) = \{ u_{ij} : 1 \leq i \leq n \text{ and } 1 \leq j \leq m \} \).

Define \(f : V(C_n \times P_m) \to \{0, 1, 2, \ldots, q = (2m-1)n\} \) by
\[
f(u_{ij}) = i - 1, \quad 1 \leq i \leq n.
\]
Throughout this proof, addition being taken modulo \(n \) with residues 1, 2, 3, \ldots, \(n \).

Let \(\sigma_j = \begin{pmatrix} 1 & 2 & 3 & \ldots & n \\ n-j+2 & n-j+3 & n-j+4 & \ldots & n-j+1 \end{pmatrix} \)
\[
f(u_{\sigma_j(i), j}) = n(j-2) + (n-1) + i, \quad 1 \leq i \leq n \quad \text{and} \quad 2 \leq j \leq m.
\]

The labels of the edges are,

For \(1 \leq j \leq m \),
\[
f_1(u_{\sigma_j(i), j}, u_{\sigma_j(i+1), j}) = \begin{cases} n(2j-2) + (2i-1), & 1 \leq i \leq n-1 \\ n(2j-2) + (n-1), & i = n \end{cases}
\]
For \(2 \leq j \leq m-1 \),
\[
f_1(u_{\sigma_j(i), j}, u_{\sigma_j(i), j+1}) = f(u_{\sigma_j(i), j}) = f(u_{\sigma_j(i), j}) = f(u_{\sigma_j(i), j}) = f(u_{\sigma_j(i+1), j+1}) \quad \text{by the definition of} \ \sigma_j.
\]

Therefore,
\[
f_1(u_{\sigma_j(i), j}, u_{\sigma_j(i+1), j}) = \begin{cases} n(2j-1) + (2i-1), & 1 \leq i \leq n-1 \\ n(2j-1) + (n-1), & i = n \end{cases}
\]

Let \(E_1 = \{ f_1(u_{\sigma_j(i), j}, u_{\sigma_j(i), j+1}) : 1 \leq i \leq n-1 \text{ and } 1 \leq j \leq m \} \) and
\[
E_2 = \{ f_1(u_{\sigma_j(i), j}, u_{\sigma_j(i), j+1}) : 1 \leq i \leq n-1 \text{ and } 2 \leq j \leq m-1 \}.
\]

The labels of the edges in \(E_1 \) are,
\[
f_1(E_1) = \{ 1, 3, 5, 7, 9, \ldots, 2(n-1) - 1, n-1, 2n+1, 2n+3, \ldots, 2n + 2(n-1) - 1, 2n + n-1, \ldots, 2n(m-1) + 1, 2n(m-1) + 3, \ldots, 2n(m-1) + 2(n-2) - 1, 2n(m-1) + 2(n-1) - 1, 2n(m-1) + (n-1) \}.
\]
That is, \(f_1(E_1) = \{ 1, 3, 5, 7, 9, \ldots, 2n-3, n-1, 2n+1, 2n+3, \ldots, 3n-1, \ldots, 4n-3, \ldots, 2mn-2n+1, 2mn-2n+3, \ldots, 2mn-5, 2mn-3, 2mn-n-1 \}.
\]

The labels of the edges in \(E_2 \) are,
\[
f_1(E_2) = \{ 8, 10, 12, 14, 16, \ldots, 2(n-1) + 6, 2n-1, 3n+1, 3n+3, \ldots, 3n + 2(n-1) - 1, 3n + n - 1, \ldots, n(2(m-1) - 1) + 1, n(2(m-1) - 1) + 2(n-2) - 1, n(2(m-1) - 1) + 2(n-1) - 1, n(2(m-1) - 1) + (n-1) \} = \{ 8, 10, 12, 14, 16, \ldots, 2n-1, 2n+4, 3n+1, 3n+3, \ldots, 4n-1, \ldots, 5n-3, 2mn-3n+1, 2mn-3n+3, \ldots, 2mn-n-5, 2mn-n-3, 2mn-n-1 \}.
\]
\[
f_1(E_1) \cup f_1(E_2) = \{ 1, 3, 7, 8, 9, 10, \ldots, 2n-3, 2n-2, 2n-1, 2n, 2n+1, 2n+2, 2n+3, 2n+4, \ldots, 3n-1, 3n, 3n+1, 3n+2, \ldots, 4n-3, 4n-2, 4n-1, \ldots, 2mn-3n+1, 2mn-3n+2, 2mn-3n+3, \ldots, 2mn-n-3, 2mn-n-1 \}.
\]
\[\ldots, 2mn - 2n - 1, 2mn - 2n, 2mn - 2n + 1, \ldots, 2mn - n - 3, 2mn - n - 2, 2mn - n - 1, 2mn - n, 2mn - 5, 2mn - 3 \].

After taking \((\text{mod } q)\), \(f^i(G(E(G))) = f_i(G(E(G))) \pmod{q} = \{1, 2, 3, \ldots, n - 3, n - 2, n - 1, n, n + 1, n + 2, \ldots, 2n - 1, 2n, 2n + 1, 2n + 3, \ldots, 3n - 1, 3n, 3n + 1, \ldots, 4n - 2, 4n - 1, n(2m - 3) + 1, n(2m - 3) + 2, \ldots, 2n(m - 1), 2n(m - 1) + 1, \ldots, n(2m - 1) - 1, n(2m - 1) \}.

Hence, \(C_n \times P_m\) is a felicitous graph for \(m \geq 1, n \geq 5\) and \(n \equiv 1 \pmod{2}\).

Example 3.9. A felicitous labeling of \(C_3 \times P_4\) is shown in Figure 3.

![Figure 3](image1.png)

Figure 3: A felicitous labeling of \(C_3 \times P_4\).

Example 3.10. A felicitous labeling of \(C_7 \times P_4\) is shown in Figure 4.

![Figure 4](image2.png)

Figure 4: A felicitous labeling of \(C_7 \times P_4\).

References

Sundaranar University, Tirunelveli, (1996), 47 - 61.

